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Summary and objectives 

 

Understanding how intelligence works is one of the key frontiers of human knowledge. Recent              

impressive advances on this front have been made in a field of computer science called Artificial                

Intelligence (AI). Researchers in AI are not interested in understanding the human brain as such, but                

rather to apply simple yet powerful learning techniques to solve real-world challenges such as face               

recognition, image annotation, or playing games. An important trend in AI is called deep learning:               

artificial deep neural networks (DNNs) featuring many layers of computational units, which are able to               

match or even exceed human level performance on specialized tasks. Current DNNs architectures             

however tend to be brittle: they exhibit limited capacity to transfer knowledge across tasks and require                

massive amounts of expensive labeled data to be trained properly on a given task.  

 

The overall aim of this project is to augment labeled data with samples of human brain activity to train                   

DNN, which performance will generalize across a range of tasks drawn from different cognitive              

domains. The specific aims and hypotheses of the project are as follows: 

 

1. Train DNNs to generate brain-like dynamics during naturalistic stimuli (i.e. movies and video             

games). The hypothesis is that large DNNs can be trained to accurately reproduce brain dynamics               

(auto-encoding), by learning connections in a space restricted by priors on anatomo-functional            
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connectivity generated using individual experimental measures.  

2. Train DNNs to jointly generate brain-like dynamics as well as perform supervised learning tasks in               

vision, language and memory domains. The hypothesis is that biological brain data will help train               

DNNs faster on the supervised task, using more limited number of training samples than in the                

absence of biological brain data. 

3. Transfer a DNN trained on a specific task to a task from a different domain, e.g. from vision to                   

language. The first layers of the DNN will be identical for both task, but the highest layers will be                   

trained in a task-specific fashion. The hypothesis is that, by using biological brain data in the                

training, the underlying architecture will be flexible even if initially trained in a specialized domain.               

Transfer learning will therefore work efficiently, achieving accurate and fast learning. 
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Theoretical background 

 

Artificial deep neural networks. ​DNNs are mathematical models loosely inspired by biological            

networks. The type of DNNs that will be used in this project are trained using mathematical                

optimization tools to perform ​supervised ​tasks. This typically means that a large number of labeled               

data is available, e.g. the ImageNet ​(Fei-Fei et al., 2010) database which features pictures organized               
1

by categories. The parameters of the DNNs are iteratively adjusted such that it is able to match data                  

points, e.g. images, to labels, e.g. image categories. These artificial neural networks are called “deep”               

because they are structured with many layers of formal neural units, while originally only “shallow”               

architectures with a few layers had been successfully trained. The AlexNet architecture was a turning               
2

point, demonstrating that a deep network featuring 8 layers could substantially improve the             

state-of-the-art on ImageNet ​(Krizhevsky et al., 2012)​. Both the number of layers and the              

performance have kept increasing since, with networks including tens of millions of parameters and up               

to 1000 layers attaining very low error rates on ImageNet ​(He et al., 2016)​.  

 

Fig. 1 - a​: artificial neural network trained for image recognition on ImageNet. Each unit in each layer                  

of the network has a specific response to each image. ​b​: a regression model is used to predict the                   

response of the artificial network from the functional activity of a human brain, exposed to the same                 

stimuli. This predicted response can also be used to extract a predicted label from the artificial                

network, and implement a brain decoding model. Image from ​(Horikawa and Kamitani, 2017)​. 
 

On the relationship between artificial and biological neural networks. ​Because of the striking             

ability of DNNs to solve tasks at a level of performance close to humans, a wave of recent works have                    

aimed at relating the features learned by DNNs with human brain activity. The general idea is to                 

expose a DNNs and a human participant to the same categories of stimuli, and then compare the                 

responses of different parts of the networks across the artificial and biological networks. This type of                

approaches has notably been applied in vision tasks with fMRI ​(Horikawa and Kamitani, 2017)​, and               

magnetoencephalography in humans ​(Güçlü and van Gerven, 2015)​, as well in electrophysiology in             

monkeys ​(Yamins and DiCarlo, 2016)​. In particular, Horikawa and Kamitani were able to predict a               

substantial part of the activity of a DNNs trained on ImageNet from human fMRI data and use that                  

prediction to infer the category of images presented to the participants beyond chance level from               

neuroimaging data only. But the connection between DNNs trained solely on data labels and real brain                

networks will necessarily remain limited ​(Dong et al., 2018)​. A natural next step would be to enforce                 

some similarity between the response and those observed with human brain activity. This approach is               

promising: in a recent work, a DNN was trained for image labeling by weightening more the images                 

that are easy to categorize based on the associated brain response, which lead to an increase in                 

performance of the DNN ​(Fong et al., 2018)​.  
 

Towards transferable networks. Despite impressive progress in the field of AI research, some             

obstacles remain. First, training DNNs to high level of accuracy still typically requires large amounts of                

high quality labeled data available, e.g. in biomedical applications ​(Ching et al., 2018)​. Second, a DNN                

trained on one task will not necessarily transfer with good performance even on a closely related task.                 

For this reason a current area of interest is few-shot learning, i.e. the ability to learn from only a                   

1 www.image-net.org/ 
2 https://en.wikipedia.org/wiki/AlexNet 
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couple examples, facilitated by the ability to transfer knowledge gained on previous task, e.g. ​(Nichol               

et al., 2018)​. Interestingly, although we discussed work related to artificial and biological neural              

networks predominantly in the field of vision research, similar lines of work have been explored with                

auditory ​(Kell et al., 2018) and language processing ​(Jain and Huth, 2018)​. In the brain, memory and                 

sensory representations are distributed and inter-twinned. Training of DNNs under constraint of            

biological data therefore appears as a promising avenue to establish architectures capable of good              

transfer properties, possibly across different cognitive domains. 

 

Overview of the project. ​In this project, we are planning to scan extensively a handful of                

participants in a variety of cognitive tasks. The scanning will occur weekly in functional MRI over a year                  

(roughly 50 scanning sessions), and bi-weekly in MEG (roughly 10 scanning sessions). The fMRI and               

MEG techniques were selected because of their complementary insights into brain function: good             

spatial resolution for fMRI, excellent temporal resolution for MEG. The core of each session will consist                

of watching a series of videos, composed of short clips selected to cover a variety of actions, as well as                    

longer movies featuring more extensive narrative. These data will let us develop and validate a new                

class of DNNs able to capture brain dynamics efficiently, while scaling to large numbers of parameters                

(Aim 1). Each subject will also perform tasks drawn from, or inspired by, recent AI research. These                 

tasks cover the memory, vision and language domains. By collecting extensive task battery on the               

same subjects as well as movie, we will be able to test if the DNNs trained on the movie data have                     

extracted features that can be used to achieve good performance on a variety of tasks (Aim 2). We will                   

also be able to test if training on one of the task will increase the speed of learning on the other tasks                      

as well (Aim 3).  

 

We will also include a video game task. It has been shown that skills acquired or trained through                  

playing video games, can be transferred to various cognitive tasks relevant for everyday life. In a                

meta-analysis, Powers et al. ​(2013)​, found that video game play has an effect on auditory and visual                 

processing skills, motor skills, and spatial imagery (refs ). Similarly, Boot and colleagues ​(Boot et al.                

2008) reported that action based video game players outperform non-video game players on             

visuospatial and working memory task, and similar results were found after action based video game               

training ​(Boot et al. 2008; Blacker et al. 2014, Green and Bavelier 2006​, ​Green and Bavelier 2007)​. As                  

such, playing video games can be considered a type of naturalistic stimuli, as it engages and                

strengthens various cognitive functions useful in day to day functioning. By contrast, DNNs have              

difficulties transferring skills acquired in one video game to another one, even when the new game                

shares very similar mechanics with the original game used for training (Nichol et al., 2018). By                

collecting extensive video game play in one participant, across various types of video games, we will                

be able to test if the DNNs trained on the data from one video game, have extracted features that can                    

be used to achieve good performance on a variety of cognitive tasks, as well as on different types of                   

video games (Aim 2). We will also be able to test if training on one of the videogame will increase the                     

speed of learning on the other videogames, or cognitive tasks, and thus achieves superior              

generalization abilities compared to existing DNN architectures (Aim 3).  

 

We want to replicate fMRI paradigm used in the Human Connectome project (HCP) . HCP is a publically                 
3

available data set, and their latest fMRI data release includes data acquired on 1200 participants,               

during 21 different tasks, spanning across 7 cognitive domains. Each task last only a few minutes, and                 

in total the paradigm takes only 1h to scan, and most of the participants were only scanned twice on                   

the paradigm. Both their stimuli, and Eprime scripts readily downloadable, and as such a replication               
4

can be done quickly (i.e. we don’t need to develop stimuli as with we are currently doing for task                   

mentioned above). Contrary to HCP, and in line with Neuromod’s aims, we will scan a small number of                  

participants twenty times on the paradigm, giving is good dataset to start testing models for aims 2                 

and 3, for various cognitive domains, and also enabling us to test the reliability of activations in a                  

particular cognitive domain.  

 

Impact and outcomes. ​The main outcome of this project will be a new framework to train artificial                 

networks to better generalize to new tasks, compared to what is currently possible. ​Even if the artificial                 

networks were to not improve on the state of the art for established supervised tasks, they may still be                   

useful as computational models of brain networks, provided that they explain a significant portion of               

variance in biological data. Finally, the amount of individual longitudinal data accumulated in this              

project will be unprecedented, even in its first year of existence. This dataset will open new avenues to                  

3 https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release 
4 https://pstnet.com/products/e-prime/ 
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explore the longitudinal variations of functional brain networks in individual subjects, beyond the             

specific objectives of the study. 

 

Methods  

 

Subjects 

 

As part of the main project, we will recruit about 12 participants, over the age of 18 to join the study                     

for a minimum of five years. Participant’s will be recruited by word of mouth, as we hope to find                   

participants that will be able to commit to the extensive time commitment required by the study, and                 

that are likely to remain throughout the course of the project. Exclusion criteria include visual or                

auditory problems that would prevent participants from seeing and/or hearing stimuli in the scanner,              

chronic or recent (i.e. in the last two years), psychiatric or neurological problems. In addition, the                

standard exclusion criteria for MRI and MEG will apply.  

 

In addition, we will recruit 6 participants, to act as a control group for the ​auditory battery (​see section                   

below). These participants will be tested on the ​auditory battery ​at the same frequency as original 12,                 

only they will not undergo scanning. The goal of these controls is to account for any potential changes                  

in auditory iperformance related to learning or practice, particularly on the ​MATRIX test ​(see below),               

where the same stimuli will be repeated at each session.  

 

Auditory sessions  

 

There will be two types of auditory sessions; ​auditory battery​, and the ​auditory attenuation pilot​.  
 

The ​auditory battery is designed to ensure that we can monitor, and quantify any temporary, and/or                

permanent change in participants’ auditory systems as a result of repeated exposure to different types               

of scanning related noise. The auditory battery will be done approximately once a month, or every four                 

scans, and will last around 60 minutes. All hearing tests will be carried out in a soundproof booth and                   

will be administered by trained staff. All test are non-invasive, and carry no risk to the participants. 

 

Hearing tests included in our battery: 

 

Pure-tone Audiometry (20 min): This test measures hearing acuity for tones at low to high frequencies                

(Hz), and at different intensities (dB), ​(Huizing, 1951)​. Participants will be asked to wear a set of                 

headphone and instructed to raise their hand when a sound is detected. For every correct answer the                 

volume will be lowered, and for every incorrect answer the volume is increased. This process is                

repeated until a participant responds to a test signal (or tone), 70% of the time on ascending trials (i.e                   

when we establish their threshold). Thresholds will be measured for a range of both low, and high                 

frequencies (500-1600 Hz). 

 

Tympanometry ​(5 min): This tests the state of the middle ear, namely the mobility of the eardrum (                  

tympanic membrane), and the conduction bones. Following a visual inspection of the ear to ensure the                

path to the eardrum is clear, a tympanometer probe will be inserted into the participants ear canal.                 

The probe will then alters the pressure in the ear canal, send out a pure tone, and measure the                   

eardrum mobility to the sound at different pressures. Tympanometry can be used to test the condition                

of the middle ear, determining whether it is functioning normally, contains fluid, or whether the               

tympanic membrane has been punctured ​(Lilly, 1984)​. This test will also allow us to differentiate               

between temporary hearing loss due to sinus infections or allergies ​(Lazo-Sáenz et al., 2005)​, versus               

potential loss due to scanning conditions. 

 

Otoacoustic emissions - (OAE’s; 15 min): ​OAE’s are sounds given off by hair cells in the inner ear that                   

respond to sound by vibrating ​(Kemp, 2002)​. The vibration produces a very quiet sound that echoes                

back into the middle ear. If you have normal hearing, you will produce OAEs, however if your hearing                  

loss is greater than 25–30 decibels (dB), you will not. OAE’s are measured by placing a small                 

earphone/probe in the outer cavity of - your ear, the probe then output sounds into your ear and                  

measures the sounds that come back.  

 

English and French MATRIX speech test (10 min): ​MATRIX speech test will assess a participant's ability                

to understand sentences while exposed to background noise ​(Hagerman, 1982)​. Participants will be             

asked to wear a set of headphone that will deliver one of 20 different sentences with background                 
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noise. Participants will be asked to repeat the sentence they just heard. If they only partially heard the                  

sentence, they will be asked to repeat the portion of the sentence or words they heard. Participants                 

will be tested on the French or English test based on which language they are more proficient in.  

 

The sound attenuation pilot ​(60 minutes), will be used to quantify the efficiency of MRI compatible                

ear muffs we built at UNF. Each participant will have their free-field thresholds tested in the following                 

conditions: 1) with nothing, to establish their baseline, 2) with the sensimetrics earbuds             

(MR-compatible sound delivery system available at UNF that provides about 20 dB of sound protection               

at higher frequency ), 3) with earbuds and headcase (see Personalized headcase section), 4) with              
5

earbuds, headcase and earmuffs. During the assessment, the participants will sit in a soundproof              

booth, facing two speakers, located on either side of their chair, at an approximately 45 degree angle.                 

Sounds will be presented to the participants via the two speakers, and participants will be instructed to                 

press a button every time they hear a sound. Similarly to the Pure-tone audiometry (see above),                

free-field thresholds measure hearing acuity for tones at low to high frequencies (Hz), and at different                

intensities (dB), only sounds are presented via the speakers instead of headphones.  

 

Personalized headcases 

 

In order to minimize movement during neuroimaging scans, for each participant we will purchase a               

custom-designed, personalized headcases from Caseforge . In order to personalize the headcases, we            
6

will need to scan each participant's head using a handheld 3D scanner. The images will be sent to                  

Caseforge’s secure servers where they will be used to mill two personalized headcases for use in the                 

MRI, and MEG scanners.  

 

The ​motion task ​(60 minutes), the goal of this task is to quantify the amount of head motion motion                   

with and without the personalized headcase. Small Qr codes, called ArUco , will be places on the                
7

participants’ head, and motion will be recorded using an MRI compatible camera. Participants will be               

scanned in both the fmri and MEG, with and without their headcases, doing a variety of tasks. These                  

tasks will include watching resting state, reading a text out loud, watching a video, and playing a video                  

game.  

 

Autonomic measures 

 

Participant’s pulse will be measured using a MR-compatible plethysmograph, placed on the ankle to              

obtain beat-by-beat estimates of heart rate based on the interval between successive systolic peaks.              

Skin conductance will be measured using two MR-compatible electrodes applied to the sole of the foot.                

An electrocardiogram will be recorded using three MR-compatible electrodes places on the participants             

upper body and will measure the electrical activity generated by the heart. A pneumatic belt will be                 

place under the participants ribs, to measure their rate of respiration. Measures will be acquired at                

1000 Hz using the BIOPAC systems available at l’UNF, and data will be processed in an event-related                 
8

manner. The changes in heart rate induced in the 10 seconds following the onset of the stimuli will be                   

measured relative to baseline (1 sec pre-stimulus). The skin conductance response will be assessed              

using the area under the curve (10 sec epoch post-stimulus) of the smoothed (1-sec average) and                

drift-corrected (1-sec differential) signal. These measures will be collected in during both the fMRI and               

MEG scans. 

 

 

Visual presentation, eye tracking and pupil dilation  

 

During fMRI scans, all visual stimuli will be presented in a standardized fashion: where they will see                 

stimuli presented screen at the the back of the scanner via a mirror. During the MEG scan stimuli will                   

be presented on a screen, and eye motion and pupil dilation will be recorded using using and MEG                  

compatible Eyelink .  
9

 

Pupillometry and eye tracking data will and analyzed using the image-analysis software ViewPoint from              

5 ​http://www.sens.com/products/model-s15/#documentation 
6 ​https://caseforge.co/  
7 ​https://docs.opencv.org/3.1.0/d5/dae/tutorial_aruco_detection.html 
8 https://www.biopac.com/application/magnetic-resonance-imaging-with-biopac-equipme​nt/ 
9 ​https://www.sr-research.com/solutions/fmri-meg-solutions/ 
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Arrington Systems , or an equivalent open source software. 
10

 

Facial expression stimuli 

 

During both the ​fMRI and MEG scans participants facial expressions will be videotaped using MRI/MEG               

compatible cameras, that will either be mounted on the head coil, or on the wall of the MEG room. The                    

facial responses will be quantified by trained personnel using the Facial Action Coding System ​(Ekman,               

1980)​.  
 

Experimental Procedures 

 

Participants will attend a recruitment session where they be given the consent form to read over. The                 

exclusion criteria, and MRI & MEG screening criteria will also be checked. Upon acceptance of               

participants, the screening questionnaire, will be given to the subject, and a three-dimensional image              

of their head will be acquired using a Caseforge hand-held scanner. Future scanning and testing               

session will be scheduled for the upcoming month. 

 

Structural MRI sessions (60 minutes) will be acquired approximately once every 3 months. The              

purpose of these session is to collect various types of structural information. Using the 64-channel               

head coil and standard UNF sequences, we will acquired the following types of scans: T1 ME-MPRAGE                

(9 min), Diffusion-weighted scan (6 min), MTstat (6 min), MP2RAGE (5 min), T2 -SPACE (6 min),                

PD-weighted images (10 min). During the scans participants will be instructed to relax, and try to                

remain still.  

 

fMRI sessions (60 minutes). Images will be acquired on the 64-channel head coil using a MB sequence                 

developed at l’UNF. Participants will be asked to participate in two type of tasks that will last about 30                   

minutes; during the video task they will watch videos of vary lengths, and the video game task (see                  

below). The other task will be one of the following:  

 

The ​language task ​(13 minutes). Participants will be presented word triplets; one target word,              

followed by two words shown side by side. Participants will be instructed to selected which of the two                  

words are most similar to the target word. They will use an MR-compatible mouse to record their                 

choice (a - left words; - right word). Stimuli will be presented using a randomized inter-stimulus                

interval, and during the interstimulus interval participants will be presented a blank screen.  

 

The ​reading task ​(15 minutes). During this task, 10 participants will be asked to read out loud a text                   

that they see on the screen. This task will be used to quantify motion and to assess the efficacy of the                     

headcase at reducing motion.  

 

The ​image task ​(13 minutes). Participants will be presented with images depicting real-world scenes,              

and judge whether they liked, disliked, or were neutral about the image. An MR-compatible mouse will                

record their choice. Images are selected from a large scale and diversity image datasets such as                

ImageNet , Common Objects in Context dataset , SUN database ​(Xiao et al., 2010)​, and the THINGS               
11 12

dataset. We selected images to cover a wide range of categories, based on ImageNet, with at least two                  

different examples in each category. Images will be presented in event-related fMRI  

The ​memory task ​(13 minutes), participants will be presented a randomized sequence of everyday              

images (selected from ImageNet), and control stimuli (an abstract multicolored image) for three             

seconds each. Images will appear in one of the four quadrants of the screen and participants will be                  

asked to remember the images, as well as their position in the four quadrants (either top-left, top                 

right, bottom-left or bottom-right). To control for attention, they will also be asked to press a key each                  

time they see a stimuli. The encoding phase will last 13 minutes ​(Belleville et al., 2014)​. The retrieval                  

will be done outside the scanner, and 10 minutes after the end of the encoding phase. Participants will                  

be presented the same set of images from the scanner, in a new order, along with new images, all                   

appearing in the center of the screen. They will have to determine whether each image has been                 

previously presented, and if YES, where it was located ​(Belleville et al., 2014)​. 
 

During video game task (30 to 60 minutes depending on the session type) participants will use an                 

10 ​http://www.arringtonresearch.com/index.html 
11 http://www.image-net.org/ 
12 http://cocodataset.org/#home 
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MRI compatible video game controller built by André Cyr, the UNF engineer. The video game controller                

uses fiber optics to minimize the likelihood of artifacts in the MRI scanner, and the shell of the                  

controller is 3D printed using an in-house printer. While being scanned participants will be to play                

video games, such as Shinobi III . The games, as well marker of the participants’ style of play (i.e.                  
13

button presses, number of jumps, runs, lunges, ducks, etc), and game stats will be recorded and                

saved for later analysis.  

 

Resting state scan (14 minutes; two seven minute runs), will be acquire approximately once every               

four sessions, and participants will be presented with the Inscapes video to help reduce movement,               
14

minimize cognitive loads ​(Vanderwal et al., 2015)​.  
 

MEG sessions (120 minutes), will mimic fMRI sessions. In the first task they will watch 30 minutes of                  

videos of various lengths and during the second portion they will be assigned one of the following                 

tasks: ​language task​, ​images task​, ​memory task, or video game task​. Participants will also do the                

resting state. The exact nature of the tasks are described above. 

 

Pilot Project ​(60 minutes of 11 visits​). Four participants will undergo fmri 10 session of 1h and 1 MEG                   

session during which they will do the HCP fMRI protocol . This task will only be acquired in the MRI                   
15

scanner. The protocol consists of seven tasks, namely; gambling, motor, language processing, social             

cognition, relational processing, emotional processing, and working memory. The descriptions below           

were adapted from the HCP protocol site. Before each task participants are given detailed instructions,               

and are given examples, as well as a practice run.  

 

During the ​gambling task (approximately 4 minutes), participants will play a card guessing game              

where they will be told to guess whether the number of a card (represented by a “?” presented for                   

1500​ms on the screen) is above or below 5 ​(Delgado et al. 2000)​. They will indicate their choice using                   

button press and following their choice they will be shown the correct number. If they guess correctly                 

they win money ($1.00 - reward condition), if they guess incorrectly they lose money ($0.50 - loss                 

condition), and if the number is exactly 5 they will neither win or lose money (neutral condition). The                  

conditions are presented in blocks of 8 trials that are either mostly reward (6 reward trials pseudo                 

randomly interleaved with either 1 neutral and 1 loss trial, 2 neutral trials, or 2 loss trials) or mostly                   

loss (6 loss trials pseudo-randomly interleaved with either 1 neutral and 1 reward trial, 2 neutral trials,                 

or 2 reward trials). There are four block per run (2 mostly win and 2 mostly loss), and two runs in                     

total. At the end of the session, 5 trial will be randomly selected and participants will corresponding                 

amount of money that they won/loss on those 5 trials.  

 

During the ​motor task ​(approximately 5 minutes), adapted from (​Buckner et al. 2011​; Yeo et al.                

2011​), participants will be presented a visual cue, and asked to either tap their left or right fingers,                  

squeeze their left or right toes, or move their tongue to map motor area. Each movement lasts 12                  

seconds, and in total there are 13 blocks, with 2 of tongue movements, 4 of hand movements (2 right                   

and 2 left), and 4 of foot movements (2 right and 2 left), and three 15 second fixation blocks where                    

they will be instructed not to move anything. There are two runs in total, and 13 blocks per run.  

During the language processing task (approximately 5 minutes), participants either listen to an             

auditory story (5-9 sentences, about 20 seconds), followed by a two-alternative forced-choice            

question, or they listen to a math problem (addition and subtraction only, varies in length), and                

instructed to push a button select the first or the second answer as being correct. The task is adaptive                   

so that for every correct answer the level of difficulty increases. The math task is designed this way to                   

maintain the same level of difficulty between participants. There are 2 runs, each with 4 story and 4                  

math blocks, interleaved.  

 

During the ​social cognition task ​(approximately 5 minutes), participants will be presented with short              

video clips (20 seconds) of objects (squares, circles, triangles) that either interact in some way, or                

move randomly on the screen (​Castelli ​et al. 2000​; (​Wheatley ​et al. 2007​). Following each clip                

participants will be asked to judge whether the objects had a “Mental interaction” (an interaction that                

appears as if the shapes are taking into account each other’s feelings and thoughts), whether the are                 

“Not Sure”, or if there was “No interaction”. Button presses are used to record their responses. In each                  

of the two runs, participants will view 5 “Mental” videos and 5 random videos and have 5 fixation                  

13 https://en.wikipedia.org/wiki/Shinobi_III:_Return_of_the_Ninja_Master 
14https://vimeo.com/67962604 
15 http://protocols.humanconnectome.org/HCP/3T/task-fMRI-protocol-details.html 
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blocks of 15 seconds each.  

 

During the relational processing task ​(approximately 5 minutes) participants will be shown 6             

different shapes filled with 1 of 6 different textures (​Smith ​et al. 2007​). The are two conditions:                 

relations processing, ​and ​control matching condition. ​In the ​relational processing condition, 2 pairs of              

objects are presented on the screen, with one pair at the top of the screen, and the other pair at the                     

bottom. They are instructed to decide what dimension differs in the top pair (shape or texture), and                 

then decide if the bottom pair differ, or not, on the same dimension (i.e. if the top pair differs in shape,                     

does the bottom pair also differ in shape). Their answers are recorded by one of two button presses:                  

“a” differ on same dimension; “b” don't differ on same dimension. In the ​control matching condition,                

participants will be shown two objects at the top of the screen, and one object at the bottom of the                    

screen, with a word in the middle of the screen (either “shape” or “texture”).They will be told to decide                   

whether the bottom object matches either of the top two objects on that dimension (i.e., if the word is                   

“shape”, is the bottom object the same shape as either of the top two objects). Participants respond                 

“yes” or “no” using the button box. For the relational condition, the stimuli are presented for 3500 ms,                  

with a 500 ms ITI, and there are four trials per block. In the matching condition, stimuli are presented                   

for 2800 ms, with a 400 ms ITI, and there are 5 trials per block. In total there are two runs, each with                       

three relational blocks, three matching blocks and three 16-second fixation blocks 

 

During the ​emotion processing task ​(approximately 4 minutes) participants will be shown triads of              

faces or shapes, and asked to decide which of the shapes at the bottom of the screen matches the                   

target face/ shape at the top of the screen (adapted from ​Smith ​et al. 2007​). Faces have have either                   

an angry or fearful expression. Faces, and shapes are presented in three blocks of 6 trials (3 faces and                   

3 shapes), with each trial lasting 2 seconds, followed by a 1 second interstimulus interval. Each block                 

is preceded by a 3000 ms task cue (“shape” or “face”), so that each block is 21 seconds including the                    

cue. ​In total there are two runs, three face blocks and three shape blocks, with 8 seconds of fixation at                    

the end of each run.  

 

During the ​working memory task ​(approximately 5 minutes) there are two subtasks in the              

paradigm; a category specific representation, and a working memory task. Participants are presented             

with blocks of either places, tools, faces, and body parts. Within each run, all 4 types of stimuli are                   

presented in block, with each block being labelled as a 2-back task (participants need to indicate if                 

they saw the same image two images back), or a version of a 0-back task (participants are shown a                   

target at the start of the trial and they need to indicate if the image they are seeing matched the                    

target). Each image is presented for 2 seconds, followed by a 500 ms ITI. Stimuli are presented for 2                   

seconds, following by a 500 ms inter-task interval. Each of the 2 runs includes 10 trials, and 4 fixations                   

blocks (15 secs).  

 

Resting state. ​In every other session, one 15 minutes rfMRI run will be acquired. Participants will                

have their eye open, be looking at fixation cross in the middle of the screen and be instructed to not                    

fall asleep.  

 

Brain Imaging preprocessing  

 

All fMRI and MEG runs will undergo standardized preprocessing pipelines.  

 

Briefly, fMRI volumes will be realigned using rigid body transform, within and between functional runs               

(including between sessions) and corrected for differences in slice acquisition times using temporal             

interpolations. Functional MRI volumes will be corrected from distortions due to field inhomogeneity             

based on a reference field map image. Temporal confounding effects (slow time drifts, motion              

parameters) will be regressed from the data. Independent component analysis will be used to identify               

and remove effects of physiological noise, such as cardiac, respiratory and motion related fluctuations.              

All available T1 weighted structural scans for each subject will be registered together using a rigid                

body transformation, and averaged to create an unbiased, high quality reference scan. Cortical surface              

will be extracted from this average structural image, which will also be coregistered with the functional                

scan for each subject. Functional runs will finally be interpolated on the cortical surface. This               

preprocessing pipeline is implemented in the package called fmriprep , developed by members and             
16

collaborators of the Poldrack laboratory at Stanford university, and depends on a mixture of different               

analytical packages including Freesurfer ​(Dale et al., 1999)​, AFNI ​(Cox, 1996) and nilearn ​(Abraham et               

16 ​https://github.com/poldracklab/fmriprep 
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al., 2014)​. A detailed description of the fmriprep pipeline is available online . 
17

 

Standard MEG data cleaning (ICA-based ocular, cardiac and muscle artefact rejection, and exclusion of              

bad segments/channels) will be followed by data segmentation with respect to events of interest. A               

MEG-compatible eye-tracker, in combination with EOG traces, will be used to control for unwanted              

artefacts or synchronizations generated by eye movements (e.g. saccades). MEG data-preprocessing           

and analyses will be conducted using a combination of open-source tools developed in the Jerbi lab                

(NeuroPycon , Visbrain , Brainpipe , and TensorPac , as well as well-established freely-available          
18 19 20 21

toolboxes, i.e. MNE-python ​(Gramfort et al., 2013)​. 
 

Artificial neuronal models 

 

Regarding aim 1, we will develop “vector-quantized variational auto-encoders” (VQ-VAE) that           

compress the brain images over a time window of 15 seconds, using discrete latent variables ​(van den                 

Oord et al., 2017)​. The training of the VQ-VAE will be implemented using all the video and video game                   

fMRI data available for each subject, and a separate model will be trained for each subject.                

Compressed representation of the video and audio signals, as well as text transcripts of the video will                 

be generated using established techniques ​(Richard, H, Pinho, AL, Thirion, B, Charpiat, G, 2018)​. We               

will then train a sparse attentive backtracking (SAB) recurrent neural network on these discrete latent               

variable representation to predict future fMRI time series from past time points, using a mixture of                

past video, audio and functional signals. The performance of the recurrent DNN will be evaluated by                

the accuracy of prediction of future fMRI time points from past fMRI time points and compared to                 

simple auto-regressive models as a benchmark, using split half cross-validation on available data (half              

of time points for training, half of time points to evaluate the accuracy of the model). 

 

Regarding aim 2, the same VQ-VAE model trained for aim 1 will be trained to reduce the                 

dimensionality of fMRI time series specifically on the data collected in the language, image, and               

memory tasks. A separate SAB recurrent DNN will be trained to solve the same task as required for                  

humans. We will evaluate the ability to solve those tasks in isolation, using ten-fold cross validation to                 

evaluate the performance of the models.  

 

Regarding aim 3, we will use the VQ-VAE model trained on all of the movie data, and only train the                    

SAB component of the recurrent DNN to solve each particular task. We will evaluate the performance                

of this variant of the model using ten-fold cross-validation (within each task) and expect this variant of                 

the recurrent DNN to be easier to train and outperform the DNNs trained specifically on each task, as                  

described in aim 2. This analysis will test directly that the representation learned on movies, or video                 

games transfer well to other cognitive context (language, memory, image).  

 

Sample size 

 

The primary aim of this project is to demonstrate our ability to efficiently train artificial DNNs to solve                  

a variety of task. Potentially this could be achieved with data collected on a single human participant.                 

The limiting factor is here the amount of data available on each individual. The amount of individual                 

data will exceed what was collected in the only comparable study we are aware of ​(Fong et al., 2018)​.                   

We do not think we can realistically collect more data than currently planned, because of the large                 

time demands already required from the research participants. To check that our observation             

generalize we would like to have three participants for each task, which we increased to four to                 

anticipate participants potentially dropping out of the study. Because we will be testing three tasks in                

parallel, the core cohort will therefore include 12 subjects.  

 

  

17 ​https://fmriprep.readthedocs.io/en/stable/citing.html 
18 ​https://neuropycon.github.io/neuropycon_doc/ 
19 ​http://visbrain.org/ 
20 ​https://etiennecmb.github.io/brainpipe/ 
21 ​https://etiennecmb.github.io/tensorpac/ 
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